High-accuracy vehicle localization for autonomous warehousing

نویسندگان

  • Goran Vasiljević
  • Damjan Miklić
  • Ivica Draganjac
  • Zdenko Kovačić
  • Paolo Lista
چکیده

The research presented in this paper aims to bridge the gap between the latest scientific advances in autonomous vehicle localization and the industrial state of the art in autonomous warehousing. Notwithstanding great scientific progress in the past decades, industrial autonomous warehousing systems still rely on external infrastructure for obtaining their precise location. This approach increases warehouse installation costs and decreases system reliability, as it is sensitive to measurement outliers and the external localization infrastructure can get dirty or damaged. Several approaches, well studied in scientific literature, are capable of determining vehicle position based only on information provided by on board sensors, most commonly wheel encoders and laser scanners. However, scientific results published to date either do not provide sufficient accuracy for industrial applications, or have not been extensively tested in realistic, industrial-like operating conditions. In this paper, we combine several well established algorithms into a high-precision localization pipeline, capable of computing the pose of an autonomous forklift to sub-centimeter precision. The algorithms use only odometry information from wheel encoders and range readings from an on board laser scanner. The effectiveness of the proposed solution is evaluated by ∗Corresponding author Email address: [email protected] (Damjan Miklić) Preprint submitted to Robotics and Computer-Integrated Manufacturing May 9, 2016 an extensive experiment that lasted for several days, and was performed in a realistic industrial-like environment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of an Autonomous Underwater Vehicle Dynamic Using Extended Kalman Filter with ARMA Noise Model

In the procedure of designing an underwater vehicle or robot, its maneuverability and controllability must be simulated and tested, before the product is finalized for manufacturing. Since the hydrodynamic forces and moments highly affect the dynamic and maneuverability of the system, they must be estimated with a reasonable accuracy. In this study, hydrodynamic coefficients of an autonomous un...

متن کامل

Monocular Visual Teach and Repeat Aided by Local Ground Planarity

Visual Teach and Repeat (VT&R) allows an autonomous vehicle to repeat a previously traversed route without a global positioning system. Existing implementations of VT&R typically rely on 3D sensors such as stereo cameras for mapping and localization, but many mobile robots are equipped with only 2D monocular vision for tasks such as teleoperated bomb disposal. While simultaneous localization an...

متن کامل

Map-Based Precision Vehicle Localization in Urban Environments

Many urban navigation applications (e.g., autonomous navigation, driver assistance systems) can benefit greatly from localization with centimeter accuracy. Yet such accuracy cannot be achieved reliably with GPS-based inertial guidance systems, specifically in urban settings. We propose a technique for high-accuracy localization of moving vehicles that utilizes maps of urban environments. Our ap...

متن کامل

Lane detection & localization for UGV in urban environment

Generally, the main components of autonomous driving system consists of perception (geometry recognition, localization, and objects detection & tracking) and navigation processes (global & local path planning, and controller). In this paper, we focus on finding an accurate position for Unmanned Ground Vehicle (UGV) in urban environments. A GPS sensor is fundamentally used to get a current globa...

متن کامل

Robust and Precise Vehicle Localization based on Multi-sensor Fusion in Diverse City Scenes

We present a robust and precise localization system that achieves centimeter-level localization accuracy in disparate city scenes. Our system adaptively uses information from complementary sensors such as GNSS, LiDAR, and IMU to achieve high localization accuracy and resilience in challenging scenes, such as urban downtown, highways, and tunnels. Rather than relying only on LiDAR intensity or 3...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016